skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Musumeci, P"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Extremely high beam-to-radiation energy conversion efficiencies can be obtained in a THz FEL using a strongly tapered helical undulator at the zero-slippage resonant condition, where a circular waveguide is used to match the radiation group velocity to the electron beam longitudinal velocity. In this paper we report on the first electro-optic sampling (EOS) based measurements of the broadband THz FEL radiation pulses emitted in this regime. The THz field waveforms are reconstructed in the spatial and temporal domains using multi-shot and single-shot EOS schemes respectively. The measurements are performed varying the input electron beam energy in the undulator providing insights on the complex dynamics in a waveguide FEL. 
    more » « less
  2. Abstract We discuss recent developments and challenges of beam dynamics in Dielectric Laser Acceleration (DLA), for both high and low energy electron beams. Starting from ultra-low emittance nanotip sources the paper follows the beam path of a tentative DLA light source concept. Acceleration in conjuction with focusing is discussed in the framework of Alternating Phase Focusing (APF) and spatial harmonic ponderomotive focusing. The paper concludes with an outlook to the beam dynamics in laser driven nanophotonic undulators, based on tilted DLA grating structures. 
    more » « less
  3. The use of sub-wavelength metal structures to locally enhance high frequency electromagnetic fields, generally known as plasmonics, enables breakthrough opportunities across diverse fields of research such as nonlinear optics, biosensing, photovoltaics and others. Here we study the application of sub-wavelength metallic resonators tuned in the THz frequency range for manipulation and diagnostics of relativistic electron beams. In this work, we report on the use of a double-sided split-ring structure driven by a near single cycle THz field generated by optical rectification to impart a time-dependent angular deviation (streak) on a 4.5 MeV electron beam. Electrons passing through the small gap reveal field enhancement factors larger than 10, in good agreement with finite difference time domain simulations. This work paves the way for further application of high frequency metallic structures in compact particle accelerators such as for THz-based relativistic electron streaking at fs and sub-fs temporal resolution. 
    more » « less